CINP 2019 Rafaelsen Young Investigator Award

Ole Rafaelsen and William Bunney were instrumental in establishing a CINP programme supporting the attendance of young scientists at the XV CINP Congress in 1986. That programme was posthumously named the Rafaelsen Fellowship Award to honour Dr Rafaelsen who died in 1987.

The Rafaelsen Travel Awards enable young researchers to attend the 2019 CINP International Meeting in Athens and mark a step in a rising career.

The award recipients are chosen by an international scientific jury. They also present their posters as part of the scientific programme.

One of this year’s winners, Zheng Chang, is assistant professor at the Department of Medical Epidemiology and Biostatistics, Karolinska Institutet (Sweden). His research is focused on understanding the risks and benefits of prescribing psychotropic medications, particularly ADHD medications, using large population-based data. He presented his poster on the association between ADHD medication and outcomes, using data from the Swedish National Patient Register to find short term beneficial effects of ADHD on several behavioural and psychiatric outcomes.

Fredrik Hieronymus, postdoctoral researcher at Aarhus University (Denmark), studies the efficacy and safety of pharmacological treatments for depression, bipolar disorder and psychosis. His poster presented study showing that the Hamilton Depression Rating Scale measures side effects and therefore underestimates the antidepressant effect of SSRIs and SNRIs.

Bin Zhang is a Junior PI in the Affiliated Brain Hospital of Guangzhou Medical University (Guangdong, China). He researches emotion and cognition interaction and neuropsychopharmacology using functional and structural MRI. His poster presents evidence that, in patients with MDD with suicidal ideation, response to ketamine is related to blood kynurenine levels before treatment as well as brain activity in the middle temporal gyrus.
Resistance is not futile: New pharmacology research making inroads in TRD

New pharmacological approaches for treatment resistant depression (TRD) will be presented on Saturday by keynote lecturer Maurizio Fava, psychiatrist-in-chief at Massachusetts General Hospital (MGH), Professor Fava is also director of the clinical research division at the MGH Research Institute, executive director of the MGH Clinical Trials Network and Institute (CTNI) and Slater Family Professor of Psychiatry, Harvard Medical School.

Speaking to CINP Daily News ahead of his lecture, he described the current research landscape: “It’s an exciting time to be in clinical neuroscience with all these new targets. Many classes are being researched and have emerged in the last five to ten years.”

Professor Fava founded and was the former director of the depression clinical research programme at MGH from 1990 to 2014. It was here that he first helped to establish the need for effective drugs for the treatment of TRD.

He was also one of the three principal investigators in the STAR*D trial, the largest and most consequential antidepressant study ever conducted. The trial enrolled 4,041 patients who screened positive for major depressive disorder (MDD) while seeking routine medical or psychiatric care. “In that study, we found that patients who don’t respond to one or two antidepressant drugs end up having very low chances of responding to subsequent attempts with antidepressants alone,” Professor Fava summarised. The reason for this, he proposed, is that currently available antidepressants are monoamine-based, and therefore operate in broadly similar ways. “You could try many different ones, but in the end you have to start looking for other avenues to get people to respond,” he explained. “I believe that you need to think about augmentation and adding drugs with different mechanisms that are not monoamine based.”

In his keynote, Professor Fava will outline a number of alternative treatments that are either available or in development. Crucially, all are showing some activity against TRD, and many are under study in clinical trials by Fava and his group.

“One avenue under pursuit is treatment augmentation with dopaminergic modulators, a class of drugs that includes dopamine reuptake inhibitors, dopamine agonists and atypical antipsychotics. The latter is the most promising, said Professor Fava: “Atypical antipsychotics affect a number of systems, are multi-action drugs and have the best evidence of efficacy.”

Currently, three drugs are approved in the US for augmentation: aripiprazole, quetiapine and brexiprazole. Other atypical antipsychotics, such as cariprazine, have also been studied for resistant depression and have shown some activity too.

The second group of drugs that show activity are those able to modulate brain bioenergetics via the modulation of mitochondrial activity1.

Neurogenesis-promoting agents are also proving of interest. Studies of buprion in combination with melatonin show a vast increase in neurogenesis, known to be significant in the alleviation of depression. Similar findings have surfaced with regard to NSI-189, a compound in development2.

Modulation of the immune system presents a further option for combating TRD, added Professor Fava. “There is a clear relationship between depression, stress and the immune system. That is why compounds such as S-adenosyl-L-methionine (SAMe) (naturally found in

Programme: Thursday 3 October

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30</td>
<td>Keynote Lecture</td>
</tr>
<tr>
<td>09:00</td>
<td>Keynote Lecture</td>
</tr>
<tr>
<td>09:30</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>10:00</td>
<td>Symposium</td>
</tr>
<tr>
<td>11:00</td>
<td>Future directions to understand psychiatric diseases</td>
</tr>
<tr>
<td>11:30</td>
<td>Meet the Expert</td>
</tr>
<tr>
<td>12:00</td>
<td>Workshop</td>
</tr>
<tr>
<td>13:00</td>
<td>Keynote Lecture</td>
</tr>
<tr>
<td>13:30</td>
<td>Closing</td>
</tr>
<tr>
<td>14:00</td>
<td>Lunch</td>
</tr>
</tbody>
</table>

the body), omega-3 fatty acids or the phosphodiesterase inhibitor pentoxifylline (which has anti-inflammatory effects) have all shown a benefit in depression as augmentations. The 117 antibody ixekizumab has shown benefits. This is a high-affinity monoclonal antibody, targeting interleukin 17a.

Another promising set of treatments are those that target γ-aminobutyric acid (GABA) and glutamine. In September of this year, a study of SAGE-217, an oral, positive allosteric modulator of GABA type A receptors, has demonstrated a robust anti-depressive effects in phase II trial. It was found that the administration of SAGE-217 daily for 14 days resulted in a reduction in depressive symptoms at day 15. Adverse events were more common, however, in the SAGE-217 group than in the placebo group, suggesting that further studies are necessary.

Similarly, studies are targeting glutamate activity in depression: “Ketamine, which is a glutamate NDMA receptor antagonist, has shown very robust efficacy,” continued Professor Fava. The same can be said for intranasal esketamine, which won approval from the US Food and Drug Administration (FDA) to be used in conjunction with an oral antidepressant for the treatment of TRD in March this year.

Despite its activity against TRD ketamine remains a contentious drug, concedes Professor Fava: “Perhaps other delegates at the conference might be surprised by the use of ketamine and even esketamine, because of the potential for abuse,” he said. “There may also be some controversy with psychedelic drugs that are active against TRD.”

Indeed, earlier this year, the first results of the controlled trial to test a psychedelic substance, ayahuasca, in TRD suggested adequate safety and therapeutic value if administered within an appropriate setting.

There are a wealth of alternative candidates acting upon glutamate that show promise or are under study. Rapastinel (GLYX-13) and baskinglurant, a negative allosteric modulator of the mGlu5 receptor, are among several candidates, noted Professor Fava. Other glutamatergic compounds include pregabalin, CP 101606 (Pfizer, US), D-Cycloserine and compounds including pregabalin, CP 101606 (Pfizer, US), D-Cycloserine and memantine, he added. In addition, mitochondrial and bioenergetic abnormalities in MDD have become an important target for the development of new therapies. Neuroinflammation in MDD has become an important target for the development of new therapies and anti-inflammatory agents show real promise.

“In addition, mitochondrial and bioenergetic abnormalities in MDD suggest the usefulness of strategies increasing brain energy metabolism. Neurogenesis-promoting and opioid modulating compounds appear to be promising therapies for depression.”

Most candidates are still under development, he added, while others are already on the market but not currently indicated for TRD: “Because these don’t have an approval specifically for depression – at least in the US – we are allowed to prescribe them but the issue is whether or not the insurance will cover the off-label use.”

A crucial need is for more direct comparisons between treatments, he said: “There has been no head-to-head study comparing these newly available compounds. We did it 15 years ago with the old compounds. There’s a clear need for [similar] study with newer treatments.”

Despite these needs, concluded Professor Fava, the present topology of research provides ample reason to be positive: “There are lots of new, exciting targets and new tools, although we need studies to guide us for a more precision medicine approach to their use.”

Maurizio Fava

“There are lots of new exciting targets and new tools although we need studies to guide us for a more precision medicine approach to their use.”

Professor Fava’s Keynote Lecture, ‘New Pharmacological Treatments for Resistant Depression’ takes place on Saturday at 12:00-13:00.

References
Back from the wilderness: the latest in psychedelics research

Erich Seifritz, chairman of the Department of Psychiatry, Psychotherapy and Psychosomatics at the Psychiatric Hospital, University of Zurich will hold a workshop this morning on the renewed interest in the potential clinical benefits of psychedelics in treating depression.

“Personally, I see great potential in the combination between this drug class and behavioral treatments,” Professor Seifritz told CINP Daily News.

His department has been researching psychedelics, as well as other treatments, for many years. “Our main research strategy is translational and heads towards the development of innovative experimental antidepressant treatments.”

Professor Seifritz will give a historical overview of psychedelics research, illustrating as he does so how this field is a far cry from what it was decades ago: “I am not talking about the psychedelic treatments that were employed during the 1960s,” he explained. “I am talking about neuroscience guided pharmacotherapy that addresses specific functional cognitive, emotional and behavioral domains that are relevant for psychotherapy, e.g. memory functions.”

In providing an overview of the evolution of pharmacological treatments for depression, he will also show that most current antidepressants essentially act in a similar way mechanistically. “This is the fundamental problem,” he said. “All the drugs we have available are more or less similar. So we cannot really expect a fundamental difference in the efficacy of this group, because within it, there is so much resemblance between one drug and another.”

One of the most striking differences between classic antidepressants and psychedelics is their rapidity of action. Classic antidepressants may take 10 days, two weeks, or even longer to reach a measurable clinical effect. In psychedelics, this can be almost instantaneous, said Professor Seifritz: “We see a change in minutes, or even a couple of hours. Clearly, there must be a different mode of action or neurobiological mechanism behind how these differences in time constants evolve.”

Specifically, the antidepressant effects of psychedelics seem to rely on different molecular and circuit-based mechanisms than classical serotonergic and adrenergic antidepressants. “There must be mechanisms involved that produce reorganisation of connectivity in the brain. Of course, these effects are incompletely understood. But that is why the whole community is really excited about the psychedelics.

“Our department has continued to conduct research very systematically,” said Professor Seifritz. “We really don’t fully understand the principles of how these drugs work. There are several hypotheses.”

The several classes of psychedelics, grouped into the serotonergic, glutamatergic and GABAergic, will be outlined by Professor Seifritz during his talk. The best-known psychedelic and most advanced in terms of entering clinical practice is the NMDA antagonist ketamine. Its isomer esketamine has already been approved for use in treatment resistant depression in the US. “The intranasal application of esketamine has even been proven effective in large randomised clinical trials,” commented Professor Seifritz. “It is being registered for the treatment of treatment-resistant depression in different countries.”

The interest in ketamine began some 15 years ago when a group of researchers from Yale University in the US published an open-label small clinical study showing that a short infusion with ketamine in treatment resistant depressed patients had a strong and fast antidepressant effect. “They could observe the antidepressive effect within an hour. That was almost incredible,” said Professor Seifritz. “The peak of the effect was observed 24 hours after the infusion.”

The serotonergic psychedelics, such as psilocybin and lysergic acid diethylamide (LSD), also offer therapeutic potential. Psilocybin is a classic hallucinogen naturally occurring in more than 100 species of mushrooms worldwide. LSD, said Professor Seifritz, is not particularly well understood and is far from being incorporated into clinical practice. “Psilocybin is better understood. It is much more advanced in clinical testing in patients regarding changes and effects in depression symptoms. I will present human data from our group about neuropsychological and neurophysiological effects of psilocybin which produce a clinical effect that is useful for the treatment of depression. I will also show some new data of the molecular and brain region characteristics of LSD in normal humans.”

Human research on LSD neurobiology stopped decades ago for a number of reasons. While knowl-
edge gaps in the understanding of its pharmacology and effect on cortical connectivity persist, recently renewed research efforts have made inroads in elucidating these. Indeed, Professor Seifritz co-authors a recent paper demonstrating that LSD significantly impairs executive functions, cognitive flexibility, and working memory, with a methodology hinging on previous efforts evidencing the compound’s agonistic action at 5-HT2A receptors.

In other recent imaging study, he and others found evidence supporting the notion that the disintegration of information processing within cortico–striato–thalamo–cortical (CSTC) feedback loops underpins LSD’s psychedelic properties.

Professor Seifritz also will discuss research into other psychedelics with antidepressant potential during his workshop, including the preclinical effects of gamma-hydroxybutyric acid (GHB), and the drug development programme of ayahuasca.

The already established place of some of these substances on the recreational drug scene is reason for caution, highlighted Professor Seifritz. While ketamine can be used for anaesthesia in higher doses, it is also a drug of abuse favoured for its dissociative effects. “Because of its abuse potential, ketamine should be employed in specific settings only to treat treatment-resistant depression,” he advised. “These include a protected environment to accompany the patient when dissociative side effects should occur. This is transient but require patient care. In addition, to prevent abuse, ketamine should not be placed at the disposal of the patient like other antidepressants.”

Indeed, in rare cases patients have experienced transient blood pressure increase after ketamine administration intravenously or intranasally, noted Professor Seifritz, adding: “Although acute physical problems are extremely rare, patients should stay under medical observation for an hour or so, according to the regulator’s provisions.”

Better understanding of the mechanisms underpinning psychedelics’ antidepressant effects is crucial in their therapeutic development. “If we do this, it will eventually become possible to design antidepressant drugs in the future that produce the desired positive effects, but not the current side effects.”

He added further as-yet unanswered questions: “How long should successful psychedelic treatments be maintained after clinical symptom improvement? What are the ideal doses and application regimens? And can we develop biomarkers that predict which patient will respond to ketamine and which patient will not?”

Professor Seifritz concluded by stressing the demand for new therapies for patients whose needs aren’t being met: “It is time to develop antidepressant medication that goes beyond the classical monoaminergic mechanisms. Psychedelics appear to be promising candidates.”

The workshop ‘Depression – new treatments with psychedelics’ takes place in Attica Hall today between 10:30 and 12:00.

References

“It is time to develop antidepressant medication that goes beyond the classical monoaminergic mechanisms.”

Erich Seifritz

www.cinp.org

The interactive presentation is very good

Attendees of the ‘Discovering ADHD in Adults’ Session, ECNP 2019

DISCOVERING ADHD IN ADULTS

Meet the experts and immerse yourself in our adult ADHD educational journey

Saturday, October 5

Opening hours: 10:00 – 12:00
Room: Temples
Royal Olympic Hotel, Athanasiou Diakou, 28 Athens, Greece

A meet the experts session at CINP 2019. This meeting is initiated and funded by Takeda.
This programme is not intended or eligible for continuing medical education (CME) or continuing education (CE)

Faculty

Larry Klassen, MD, FRCP(C), BSc is a psychiatrist and Research chair at the Edan Mental health Centre in Wilkins, Manitoba, Canada. He specializes in the treatment of adults with Mood and Anxiety Disorders, as well as ADHD, and is involved in the ongoing education of psychiatry residents and medical students

Susan J. Young, BSc (Hons), DClinPsy, PhD, GCPsych, AFSPS is the Director of Psychology Services Limited and an Honorary Professor at both Reykjavik University, Iceland and Bucka New University, UK. She is President of the UK ADHD Partnership; Vice-President of the UK Adult ADHD Network; and is a Trustee of the ADHD Foundation, UK

Josep Antoni Ramos-Quiró, MD, PhD is a Professor of Psychiatry at Universitat Autònoma de Barcelona, Spain and is Head of the Department of Psychiatry at Hospital Universitari Vall d’Hebron, Spain

Copyright 2019 Takeda Pharmaceutical Company Limited. All rights reserved. Takeda and the Takeda Logo are registered trademarks of Takeda Pharmaceutical Company Limited

www.cinp.org
Despite consistent advances in pharmacotherapy of mood disorders in the last decade, high rates of treatment-resistant depression (TRD) remain a challenge of clinical management. This formed the basis of a keynote lecture delivered yesterday morning by Siegfried Kasper, who outlined the key findings of European study in this area.

In memory of Oldřich Vinař

Professor Kasper began his lecture with a few words in memory of the lecture's namesake.

“This lecture is devoted to my good friend, Oldřich Vinař, who probably some of you know. Unfortunately he died last year, and the executive committee decided to give him special note in this meeting.

“He was born in 1925 and died in 2018 at 93 years old. Original from Brno, he went on to Prague and was very eminent in fostering neuropsychopharmacology not only in the Czech Republic but also throughout Europe and worldwide. In those days it was not so easy to develop the neuropsychopharmacology. One of his greatest achievements was founding, in 1958, the meeting in Jeseník (on the Czech-Polish border) and for over 60 years this has been a very prosperous meeting. He was working in the Czech research institute, was a member of the WHO Czech centre, and he worked with international colleagues.

“He developed a number of tests before the introduction of the Brief Psychiatric Rating Scale or the Hamilton score, and he used them as neuropsychopharmacological research tools. In 1968, he was accepted into the American College of Neuropsychopharmacology (ACNP), when the Russians moved into Czechoslovakia. This was quite an achievement; it was due to his very good reputation,

“He published a number of good papers. He was one of the forefathers of the D2-5HT2 blockers. The only problem was that he published in the Czech language, in the Czech Journal of Neuropsychopharmacology (which he also founded), so he is not referenced that often compared to our other colleagues.

“I personally think that hippocampal structure with network connectivity should be used in clinical practice.”

Siegfried Kasper

“What I also valued very much about Oldřich is that I saw him at all different kinds of meetings until he got very old. At the last ACNP meetings, he always came with his grandchildren.”

Therapy-resistant depression: A clinical approach

Professor Kasper continued to address the lectures theme: “When we talk about TRD, it is important that we view it also as a brain disease – of course, a brain disease that reaches out to the psychosocial environment and has all different implications,” he began, presenting some of the main findings of European studies of TRD, alongside clinical insights emerging therefrom.

Professor Kasper suggested that confusion in clinical terminology of TRD – which can be referred to varyingly in the literature with terminology such as ‘difficult to treat depression’, ‘refractory depression’, amongst others – ought to be reconsidered, given that it is an indication for a very specific treatment. “We should instead be talking about stages, and these stages should include patient characteristics, illness characteristics, and treatment history.

“Where are we today? We know from different studies that the second and third treatment is associated with worse outcome; this is a medical principle in different parts of medicine...the ‘wait and see’ mentality is very bad, based on the data we have available. We know from different studies that augmentation is better than switching. That was one of the major outcomes (from my point of view) of STAR*D and other studies. We know that without remission, recurrence is common. Partial remission is associated with a delay in access to effective treatment.”

He then described the work of the European Group for the Study of Resistant Depression (GSRD), with centres in Belgium, Paris, Switzerland, Italy, Germany, Athens and Tel Aviv. Over almost 20 years, the GSRD have collected 2,764 patients recruited in both university and non-university centres. These patients represent a real-world sample of depressed patients seeking treatment, exhibiting a broad range of disease severity and course as well as mental and somatic comorbidities and suicidality. GSRD has carried out cross-sectional clinical evaluation of patient characteristics and illness characteristics, and they will soon be incorporating genetic parameters into their study. A summary of the group’s clinical, genetic and pharmacological findings to date, which has fundamentally impacted evidence-based algorithms for diagnostics and psychopharmacotherapy of TRD, has recently been published.

A key recent finding of the group is of the clinical factors predicting TRD, which include comorbid anxiety disorder, suicide risk, symptom severity and number of major depressive episodes. Indeed, STAR*D showed, in a cohort of patients assigned to the SSRI citalopram, that remission was less likely and took more time in patients with depression and anxiety.

“What I valued very much about Oldřich is that I saw him at all different kinds of meetings until he got very old.”

Siegfried Kasper

In a recent study by Dold et al (2018), patients with TRD had significantly higher suicidality scores compared to patients who responded to treatment. “Very often, we are so overwhelmed by the psychopathological symptomatology of suicidality that we do not think about the treatment resistance,” commented Professor Kasper. “But treating these patients effectively from the first stage on is quite important.”

Turning to the lessons learned from the GSRD on prescription strategies in MDD, he cited Dold et al (2016), who found that 53.4% of patients were prescribed SSRIs as a first-line treatment, and 23.6% SNRIs. The authors also looked at...
Additionally prescribed medications, finding benzodiazepines and related drugs most likely to be given (33.2%), followed by a second antidepressant (29.0%), antipsychotics (24.2%), and mood stabilisers (10%).

In later work, Dold et al (2018) found second-generation antipsychotics superior to lithium as augmentation treatment.

Professor Kasper also highlighted recent work from Mandelli et al (2019): “Usually it is thought that if you have a low occupational level, you have a higher likelihood of becoming treatment resistant. In this study, and also in other independent study, we found that higher occupational levels are associated with treatment resistance. Two reasons are discussed: first, that for higher occupational level you need cognition, and cognition is impaired in our patients; second, if you have higher occupational level, probably you have more possibilities to choose other types of medications that have not been proven to be effective.”

He characterised unmet needs in the treatment of patients with MDD, including a lack of biomarkers, a lack of understanding of risk factors and outcome predictors, and a lack of effective treatments with quick onset of action and sustained efficacy.

Addressing the development of precision medicine in psychiatry, he said, “We are not there yet. But on the other hand we have some data. We published a paper on the genetic polymorphisms and clinical parameters, and found inflammatory parameters together with brain-derived neurotrophic factor polymorphisms and melancholia to be linked together as one of the predictors.”

Neuroimaging parameters in MDD have also recently been reviewed (Kraus et al, 2019), and Professor Kasper commented on this work: “I personally think that hippocampal structure with network connectivity should be used in clinical practice. Quite often we send a patient for an MRI [to investigate] tumours or brain atrophy, but nobody measures the hippocampus. We psychiatrists have to measure them ourselves. We have the machinery.”

He added that Kraus et al (2019) also outline a sequential treatment optimisation paradigm for selecting first-, second-, and third-line treatments for acute and chronically ill patients, suggesting: “This is a staging model that I think could enter clinical practice.”

In their review, Kraus et al (2019) also specify easily overlooked but modifiable factors potentially confounding response to antidepressant treatment. These include checking the dosage and duration of trial, reducing side effects, treating comorbidities, reducing ongoing stressors, considering pseudo-resistance, conducting pharmacogenetic testing (e.g. of CYP450), checking medication interactions, starting illness-specific psychotherapy, and evaluating initial dosing.

Professor Kasper concluded the session with a discussion of the latest developments in drug discovery in TRD, including ketamine (discussed in detail on p8–9 of this issue of CINP Daily News).

Commenting on the landscape of antidepressant evolution, he said: “We made a major step forward moving from the tricyclics to the SSRIs and SNRIs. I think we have good medication – the old medications work quite well - but we also need advancement in our field.”

We should instead be talking about stages, and these stages should include patient characteristics, illness characteristics, and treatment history.

Siegfried Kasper

References

Workshop brings together great minds in TRD research

Jennifer Evans and Bashkim Kadriu were panelists in Thursday’s workshop on the neurobiological and clinical characterisation approaches for developing novel therapeutics for treatment-resistant depression (TRD). Ahead of the meeting, the pair spoke to CINP Daily News to discuss the session as well as their own work.

The workshop brought together four different perspectives in tackling TRD with the aim of informing attendees of the latest effort in trying to apply neurobiological and clinical characterisation approaches for the development of novel therapeutics in TRD.

Dr Evans is a Staff Scientist at National Institute of Mental Health (NIH), a world-renowned expert in the field, providing an overall picture of perspectives from Carlos Zarate (NIH), a world-renowned expert in the field, a failure of clinically meaningful improvement and non-response to two consecutive standard antidepressant treatments used sufficiently enough in length, with adequate dose and adherence.

A number of groups have developed approaches to staging the level of resistance in TRD. These include the Thase and Rush Staging Method, the Massachusetts General Hospital (MGH) Staging Model and the Maudsley Staging Method.

"Ketamine seems normalise network dysfunction.”

Jennifer Evans

"You have to take a multifaceted approach using cross-modality integration.”

Jennifer Evans
“The field is really puzzled as to why we are not able to ‘sanitise’ the side-effect profile of [ketamine] while retaining its treatment effects.”

Bashkim Kadriu

impacts the brain.”

The recent FDA approval of its derivative esketamine for adults with TRD and the recent approval of brexanolone for postpartum depression (PPD), with an oral analogue currently under trial for MDD, signify the first mechanistically novel and distinct antidepressant agents to appear in decades. Theta burst stimulation (TBS) has also been recently been approved recently by the FDA for depression.

“The approval of three new treatments for the treatment of depression over the course of a single year is a singular achievement,” summarised Dr Kadriu. “It highlights the possibility of developing urgently needed next-generation treatments based on an improved understanding distinct from the historical monoaminergic-based treatments that takes weeks to months to show meaningful clinical improvement in depression.”

Despite tremendous progress, challenges have arisen in the investigation of many novel, promising and rapid-acting (as well as non-rapid-acting) antidepressant interventions for depression. Ongoing work seeks to address some of the dissociative and psychotomimetic side effects of ketamine. As yet, trials with ketamine-like agents that have shown promise in preclinical setting (such lamiclamine, GLX-13 and AV-101) have failed to meet primary study endpoints in human studies (as recently summarised by Duman (2018))

In his concluding remarks, Dr Kadriu considered what might make ketamine unique: “It is, conceptually, a ‘dirty’ drug,” explained Dr Kadriu. “It acts upon so many different receptors, which might be one of the factors making this treatment unique. The field is really puzzled as to why we are not able to ‘sanitise’ the side-effect profile of the drug while retaining its treatment effects.”

Ongoing collaborations with extramural programmes – such as that of Todd Gould’s group at the University of Maryland -- into the dozens of downstream metabolites of ketamine seek to do just this: “An example of that is 2R,6R-hydroxy-norketamine (known as HKN), which in preclinical animal models of depression appears to retain the rapid and sustained antidepressant-like actions of ketamine but is devoid of its dissociative-like properties. This is achieved in part via the potentiation of α-amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid receptor (AMPA)-mediated synaptic transmission⁹,” Dr Kadriu said in closing.

Reference
5. Richards EM, Zanotti-Fregonara P, Fujita M et al. PET radioligand binding to translocator protein (TSPC) is increased in unmedicated depressed subjects. EJNMMI Res. 2018 Jul 3;8(1):57.

“Deep characterisation of the disease in each of our patients.

We also do a number of clinical studies on new drugs, as well as ketamine. Here, we image at multiple time points in order to characterise response for each of these drugs. Eventually, we aim to find several markers that we will be able to use to predict response for each of these people for any given drug.”

She summarised: “From my perspective in my work on TRD, in trying to identify and develop new antidepressants you have to take a multifaceted approach using cross-modality integration. You also have to work across multiple fields, bridging psychiatry with imaging, in order to best address the heterogeneous response.”

The recent FDA approval of esketamine has cementing its place on the clinical psychiatry landscape, as much as it has influenced current and future research directions in depression. Yet the drug holds potential benefit in a range of psychiatric disorders, explained Dr Kadriu: “One of the striking facts about ketamine is that it appears to have what we call a pan-therapeutic effect, in a similar timeframe as it does in depression, in modalities such as anhedonia, fatigue, sleep and most importantly acute suicidal thoughts. This is of critical importance, as suicide strikes across different psychiatric disorders including depression, bipolar disorder, schizophrenia, post-traumatic stress disorder (PTSD), etc.”

“Recent studies show that a single dose of ketamine appears to be effective in, for example, obsessive-compulsive disorder, PTSD and bipolar depression. It seems to have a seemingly robust effect, similar to that seen in MDD. Researchers are trying to understand the long-term repeated effects of ketamine in patients with depression and relating this to how it impacts the brain.”

The recent FDA approval of its derivative esketamine for adults with TRD and the recent approval of brexanolone for postpartum depression (PPD)⁹, with an oral analogue currently under trial for MDD, signify the first mechanistically novel and distinct antidepressant agents to appear in decades. Theta burst stimulation (TBS) has also been recently been approved recently by the FDA for depression.

“The approval of three new treatments for the treatment of depression over the course of a single year is a singular achievement,” summarised Dr Kadriu. “It highlights the possibility of developing urgently needed next-generation treatments based on an improved understanding distinct from the historical monoaminergic-based treatments that takes weeks to months to show meaningful clinical improvement in depression.”

Despite tremendous progress, challenges have arisen in the investigation of many novel, promising and rapid-acting (as well as non-rapid-acting) antidepressant interventions for depression. Ongoing work seeks to address some of the dissociative and psychotomimetic side effects of ketamine. As yet, trials with ketamine-like agents that have shown promise in preclinical setting (such lamiclamine, GLX-13 and AV-101) have failed to meet primary study endpoints in human studies (as recently summarised by Duman (2018)).

In his concluding remarks, Dr Kadriu considered what might make ketamine unique: “It is, conceptually, a ‘dirty’ drug,” explained Dr Kadriu. “It acts upon so many different receptors, which might be one of the factors making this treatment unique. The field is really puzzled as to why we are not able to ‘sanitise’ the side-effect profile of the drug while retaining its treatment effects.”

Ongoing collaborations with extramural programmes – such as that of Todd Gould’s group at the University of Maryland -- into the dozens of downstream metabolites of ketamine seek to do just this: “An example of that is 2R,6R-hydroxy-norketamine (known as HKN), which in preclinical animal models of depression appears to retain the rapid and sustained antidepressant-like actions of ketamine but is devoid of its dissociative-like properties. This is achieved in part via the potentiation of α-amino-3-hydroxy-5-methyl-4-isoxazolopropionic acid receptor (AMPA)-mediated synaptic transmission⁹,” Dr Kadriu said in closing.
Evidence does not equal evidence

During this morning’s symposium on the future directions in understanding psychiatric disease, Hans-Jürgen Möller (Ludwig-Maximilians-University, Germany) discusses issues related to the development of evidence-based guidelines, illustrating as he does so that grading of evidence is neither simple nor objective.

“Evidence is the magic word nowadays,” he commented ahead of the session. “You find it in all guidelines and in all things related to decision-making in clinical psychiatry and clinical medicine in general. ‘Evidence’ means that you put together all of what is known from randomised controlled studies or from other methodologically sound studies.”

While this seems a straightforward concept, he explained, the way that evidence quality is rated is susceptible to variation due to differences in approach, criteria and judgement: “Everybody can summarise the final result or final content of all studies made in the specific or related area, in different ways.”

The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach, for the rating and summarising of quality of evidence supporting management recommendations, emerged in 2004. It was revisited in a 2008 series of BMJ papers summarising its important methodological features, including those that factors that inform decisions on evidence quality for better or worse.

One persistent dilemma, noted Professor Möller, concerns study selection and in particular whether to base evidence assessments on individual studies of high methodological standard or metaanalyses. On the one hand, review of individual studies provides direct and concrete insights into trial data relating to a particular question in clinical management. But while they avoid the abstraction that occurs in metaanalysis, individual studies remain prone to selection bias. In addition, given their nature, randomised controlled trials do not reflect real world clinical complexity.

Metaanalyses carry their own set of issues, with bias coming from study selection criteria (with the added possibility of including studies of varying quality), data extraction strategies, statistical strategies, as well as over-generalisation from the consideration of small-scale studies.

“To do metaanalysis is a bit tricky,” noted Professor Möller. “You can perform metaanalyses in different methodological ways. This can then lead to the problem that metaanalysis X leads to a different conclusion than metaanalysis Y. This is due to the different method — and not due to different data.”

Drawing these factors together, Professor Möller summarised that evidence, and evidence grading, are not as consistently defined as may be believed. Indeed, there are a number of different systems of evidence grading currently in use, with no international consensus on the matter. Different guidelines place either individual study data of high methodological standard or metaanalysis upon the highest rung of quality. The outcome of this, he said, is that different authorities come up with different recommendations — and clinicians should be aware of this. “If you find in the guideline that a certain treatment (e.g. compound X) is better than another (e.g. compound Y), with an evidence of level A, you might find in another guideline that there is no clear difference at all, or that the difference is very small and that the evidence is only of level B or C. We are talking, principally, about the same database, but different data selection, different kinds of metaanalysis, etc.”

He added a further conclusion: “Evidence A is not equal to evidence A in another guideline, because in a certain guideline they might look primarily at individual studies and calculate the positives and negatives of these studies, while the other guideline is doing a metaanalysis. Therefore, evidence level A should not be taken as some sort of [absolute metric], like a centimetre, but as a totally relative measurement.”

Hans-Jürgen Möller
CINP 2019 Committees

Councillors
- Prof. Helena Calil, Brazil
- Prof. Ryota Hashimoto, Japan
- Prof. Katharina Domschke, Germany
- Prof. Jun Soo Kwon, Republic of Korea
- Prof. Atsumi Nitta, Japan
- Prof. Peter Falkai, Germany
- Prof. Maurizio Fava, USA
- Prof. Carol Tamminga, USA
- Prof. Allan Young, United Kingdom
- Prof. Gabriella Gobbi, Canada

International Scientific Programme Committee
- Chair Pierre Blier, Canada
- Co-chair Elias Eriksson, Sweden
- Co-chair Noriko Osumi, Japan
- Alan Frazer, USA
- Carol Tamminga, USA
- Constantin Soldatos, Greece
- David Morilak, USA
- Gabriella Gobbi, Canada
- Hiroyuki Uchida, Japan
- John Krystal, USA
- John Cryan, Ireland
- Joseph Zohar, Israel
- Jun Soo Kwon, Korea
- Katharina Domschke, Germany
- Kazutaka Ikeda, Japan
- Costas Fountoulakis, Greece

Local Organising Committee
Chair: Kostas Fountoulakis
- Dimitris Dikeos, Greece
- Nick Stefanis, Greece
- Athanasios Douzenis, Greece
- Babis Touloumis, Greece
- Basil Alevizos, Greece
- Eirini Siouli, Greece
- Venos Mavreas, Greece
- Maria Samakouri, Greece
- Theofanis Vorvolakos, Greece
- George Alevzopoulos, Greece
- Ioannis Namitoudis, Greece
- Thomas Hyphantis, Greece
- Petros Skapinakis, Greece
- Filippos Gourzis, Greece
- George Michopoulos, Greece
- Nikolaos Smyrnis, Greece

Executive Committee
- CINP President: Prof. Siegfried Kasper, Austria
- CINP Past President: Prof. John H. Krystal, USA
- CINP President Elect: Prof. Pierre Blier, Canada
- CINP Vice President: Prof. Shih-Ku Lin, Taiwan
- CINP Vice President: Prof. Joseph Zohar, Israel
- CINP Secretary: Prof. Elias Eriksson, Sweden
- CINP Treasurer: Prof. Kazutaka Ikeda, Japan

South-Eastern European Committee
Distinguished representatives from the following countries:
- Albania
- Algeria
- Azerbaijan
- Bulgaria
- Croatia
- Egypt
- Georgia
- Israel
- Lebanon
- Morocco
- North Macedonia
- Romania
- Russia
- Serbia
- Slovenia
- Tunisia
- Turkey
- Ukraine

MediFore are the proud publishers of CINP DAILY NEWS

MediFore is a full-service medical communications and publishing company. We work closely with local and international scientific and medical associations, as well as industry, to develop daily conference publications as well as scientific reports and science news coverage.

enquiries@medifore.co.uk
+44 (0) 20 8761 2790
Save the Date

2020 CINP World Congress
25-28 June 2020 Taipei, Taiwan

CINP
THE INTERNATIONAL COLLEGE OF NEUROPSYCHOPHARMACOLOGY

cinp2020.org | cinp2020@cinp.org